Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[silver(I)- $\mu-1,1^{\prime}$-methylenediimidazole] hexafluoridophosphate]

Ling-Yan Wu, Zhu Zhu and Chuan-Ming Jin*

Hubei Key Laboratory of Bioanalytic Techniques, Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
Correspondence e-mail: cmjin@email.hbnu.edu.cn

Received 16 October 2007; accepted 28 October 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.036 ; w R$ factor $=0.104$; data-to-parameter ratio $=14.3$.

The title compound, $\left\{\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4}\right)\right] \mathrm{PF}_{6}\right\}_{n}$, has a one-dimensional zigzag chain structure. The Ag^{+}cation and the $\mathrm{PF}_{6}{ }^{-}$ anion reside on crystallographic inversion centres. The Ag^{+} cation is coordinated by the unsubstituted N atoms of two separate $1,1^{\prime}$-methylenediimidazole ligands. The closest $\mathrm{Ag} \cdots \mathrm{Ag}$ separation in the same cationic chain is 7.704 (2) \AA and the dihedral angle between the two imidazole rings in the same ligand is $85.5(1)^{\circ}$. A two-dimensional layer framework is formed by weak $\mathrm{Ag} \cdots \mathrm{N}$ interactions between adjacent chains, with an Ag...N distance of 3.472 (2) \AA.

Related literature

For related literature, see: Barnett \& Champness (2003); Batten \& Robson (1998); Desiraju (1995); Hamilton \& Ziegler (2004); Moulton \& Zaworotko (2001); Leininger et al. (2000); Lobbia et al. (2002); Pschirer et al. (2002).

Experimental

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4}\right)\right] \mathrm{PF}_{6}$
$M_{r}=401.01$
Monoclinic, $P 2 / n$
$a=8.3966$ (10) \AA
$b=5.1604$ (6) A
$c=13.6211(16) \AA$
$\beta=94.666(2)^{\circ}$
$V=588.24(12) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=1.92 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.23 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEX-CCD diffractometer
Absorption correction: multi-scan SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.596, T_{\text {max }}=0.793$
3264 measured reflections 1285 independent reflections 1073 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.080$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$

90 parameters

$w R\left(F^{2}\right)=0.104$
H -atom parameters constrained
$S=1.07$
$\Delta \rho_{\text {max }}=0.81$ e \AA^{-3}
1285 reflections
$\Delta \rho_{\text {min }}=-0.62 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3 $\cdots \mathrm{F}^{\mathrm{i}}$	0.93	2.78	$3.687(5)$	167
C3-H3 $\cdots 3^{\mathrm{i}}$	0.93	2.87	$3.448(5)$	122
C4-H4A $\mathrm{FF}^{\mathrm{iii}}$	0.97	2.62	$3.569(4)$	165
C4-H4A $\mathrm{FF}^{\text {iii }}$	0.97	2.48	$3.224(3)$	133
C2-H2 $\mathrm{F}^{\text {iv }}$	0.93	2.81	$3.628(5)$	148
C1-H1 $\mathrm{F}^{\text {iii }}$	0.93	2.58	$3.043(4)$	111

Symmetry codes: (i) $x+1, y, z$; (ii) $x, y+1, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $x+\frac{1}{2},-y+1, z-\frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the financial support of the National Science Funds for Distinguished Young Scholars of Hubei Province (Grant No. 2006ABB038), the Outstanding Mid-Young Scholars' Programs, Hubei Provincial Department of Education (Q20072203) and the project sponsored by SRF for ROCS, SEM (200724).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2055).

References

Barnett, S. A. \& Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168. Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Hamilton, B. H. \& Ziegler, C. J. (2004). Inorg. Chem. 43, 4272-4277.
Leininger, S., Olenyuk, B. \& Stang, P. J. (2000). Chem. Rev. 100, 853-908.
Lobbia, G. G., Pellei, M., Pettinari, C., Santini, C., Skelton, B. W., Somers, N. \& White, A. H. (2002). J. Chem. Soc. Dalton Trans. pp. 2333-2340.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Pschirer, N. G., Curtin, D. M., Smith, M. D., Bunz, W. H. F. \& Zur Loye, H.-C. (2002). Angew. Chem. Int. Ed. 41, 583-585.

Sheldrick, G. M. (1996). $S A D A B S$. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2967 [doi:10.1107/S1600536807053937]
catena-Poly[[silver(I)- μ-1,1'-methylenediimidazole] hexafluoridophosphate]

L.-Y. Wu, Z. Zhu and C.-M. Jin

Comment

The construction of solid-state architectures and crystal engineering has become rapidly developing areas of supramolecular chemistry in the past decade (Desiraju, 1995; Batten \& Robson, 1998; Leininger et al., 2000; Moulton \& Zaworotko, 2001). Such molecular architectures have been successfully designed and synthesized by judicious combination of a metal 'node' and an organic ligand 'spacer'. The roles of counter anions and different solvent molecules are also of significant effect on supramolecular self-assembly. More recently, the molecular geometry and flexibility of multidentate N -donor spacer ligands play key roles in the development of the tailor-made molecular materials and supramolecular self-assemble crystal engineering. For example, 4, 4 '-bipyridine, 1, 2-bis(4-pyridyl)ethane and trans-bis(4-pyridyl)ethene as ligands can form a lot of coordination polymers with different structure features (Barnett \& Champness, 2003; Pschirer et al., 2002). The coordination polymer frameworks which were built by methylene C-bridged bipyridine, bitriazole and bipyrazole ligands have also been described widely (Lobbia et al., 2002; Hamilton \& Ziegler, 2004). Bis(imidazol-1-yl)-methane (BIM) is flexibility V-shaped N -donor ligand which was built by methylene C -bridged two imidazole rings. The title compound, $\left[\mathrm{Ag}(\mathrm{BIM}) \mathrm{PF}_{6}\right]_{\mathrm{n}}$, (I), with a one-dimensional zigzag cationic chain structural motifs, was formed by the addition of a solution of BIM to AgPF_{6}.

Single crystal X-ray diffraction analysis reveals that complex (I) consist of one dimensional cationic polymeric chains and uncoordinated $\mathrm{PF}_{6}{ }^{-}$. The Ag^{I} ion occupies a crystallographic inversion centre and is coordinated by two imidazolyl nitrogen atoms of independent BIM ligands, which act as bridges between silver(I) centers, generated one dimensional zigzag cationic chain polymeric structure (Fig.1). Ag^{I} ion is a linear coordination mode with the bond angles of $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ being $180.0(1)^{\circ}$, and the bond lengths of $\mathrm{Ag}-\mathrm{N}$ is 2.097 (3) \AA. The adjacent $\mathrm{Ag} \cdots \cdots \mathrm{Ag}$ distance in the same cationic chain is 7.704 (2) \AA and the dihedral angle of the two imidazole rings in the same ligand is $85.5(1)^{\circ}$. The two-dimensional layer network was built by weak interactions between Ag^{I} ion and two nitrogen atoms from imidazole rings in the adjacent one-dimensional zigzag chain with the distance of $\mathrm{Ag}-\mathrm{N}$ being 3.472 (2) \AA (Fig. 2). The non-coordinated $\mathrm{PF}_{6}{ }^{-}$anions were filled in the void of each zigzag cationic chain through the weak $\mathrm{C}-\mathrm{H} \cdots \cdots \cdot \mathrm{F}$ hydrogen-bond interactions (Table 1).

Experimental

An acetone solution (5 ml) of BIM ($74 \mathrm{mg}, 0.5 \mathrm{mmol}$) was slowly diffused into an aqueous solution (5 ml) of $\mathrm{AgPF}_{6}(126$ $\mathrm{mg}, 0.5 \mathrm{mmol})$ in test tube. Colorless crystals of $\left[\mathrm{Ag}(\mathrm{BIM}) \mathrm{PF}_{6}\right]_{\mathrm{n}}$ were formed at the interface of solvent in two weeks and were obtained in 82% yield. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{AgF}_{6} \mathrm{~N}_{4} \mathrm{P}: \mathrm{C}, 20.97$; H, 2.01; N, 13.97; Found (\%): C, 21.04; H, 2.49; $\mathrm{N}, 13.92 ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v=3150 \mathrm{~s}, 3114 \mathrm{w}, 3038 \mathrm{w}, 1712 \mathrm{w}, 1614 \mathrm{w}, 1530 \mathrm{~s}, 1411 \mathrm{~m}, 1377 \mathrm{w}, 1355 \mathrm{w}, 1339 \mathrm{w}, 1291 \mathrm{~m}, 1243$ s, 1116 s, 1031w, $835 \mathrm{~s}, 747 \mathrm{~s}, 713 \mathrm{w}, 652 \mathrm{~m}, 613 \mathrm{w}, 560 \mathrm{~s}$.

supplementary materials

Refinement

H atoms were positioned geometrically at distances of $0.93(\mathrm{CH}), 0.97\left(\mathrm{CH}_{2}\right)$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$ from the parent C atoms, a riding model was used during the refinement process. The $U_{\text {iso }}$ values were constrained to be $1.2 U_{\text {eq }}$ of the carrier atom, except for methyl H atoms that were constrained to 1.5 Ueq of the C atom.

Figures

Fig. 1. The structure of (I) showing the atom-numbering of unsymmetry unit. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) $-x+2,-y,-z+1$.]

catena-Poly[[silver(I)- μ-1,1'-methylenediimidazole] hexafluoridophosphate]

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{4}\right)\right] \mathrm{PF}_{6}} \\
& M_{r}=401.01 \\
& \text { Monoclinic, } P 2 / n \\
& \text { Hall symbol: -P } 2 \mathrm{yac} \\
& a=8.3966(10) \AA \\
& b=5.1604(6) \AA \\
& c=13.6211(16) \AA \\
& \beta=94.666(2)^{\circ} \\
& V=588.24(12) \AA^{3} \\
& Z=2
\end{aligned}
$$

Fig. 2. Two-dimensional layer structure assembled by one-dimensional zigzag chains with weak $\mathrm{Ag} \cdots \cdots \mathrm{N}$ interactions.

$$
F_{000}=388
$$

Data collection

SMART APEX-CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=$ 293(2) K
phi and ω scans
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.596, T_{\text {max }}=0.793$
1285 independent reflections
1073 reflections with $>2 \mathrm{~s}^{\wedge}$ I)
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=27.0^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-10 \rightarrow 10$
$k=-6 \rightarrow 6$
3264 measured reflections
$l=-17 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.104$
$S=1.07$
1285 reflections
90 parameters
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0602 P)^{2}+0.0221 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\max }=0.81$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.62$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Ag1	1.0000	0.0000	0.5000	$0.0467(2)$	
P1	0.5000	0.0000	0.5000	$0.0395(3)$	
F1	$0.6294(4)$	$0.1949(7)$	$0.5436(2)$	$0.0925(11)$	
F2	$0.4980(3)$	$0.1377(6)$	$0.39578(17)$	$0.0719(7)$	
F3	$0.3615(4)$	$0.1824(7)$	$0.5298(2)$	$0.0900(10)$	
N1	$0.9785(3)$	$0.3049(5)$	$0.39798(19)$	$0.0421(6)$	
N2	$0.8717(3)$	$0.6069(5)$	$0.30233(19)$	$0.0356(6)$	
C1	$0.8469(4)$	$0.4306(7)$	$0.3711(3)$	$0.0397(7)$	
H1	0.7490	0.4010	0.3965	0.048^{*}	
C2	$1.0280(4)$	$0.5957(9)$	$0.2850(3)$	$0.0547(9)$	
H2	1.0798	0.6969	0.2410	0.066^{*}	
C3	$1.0936(4)$	$0.4092(10)$	$0.3443(3)$	$0.0592(10)$	
H3	1.2003	0.3590	0.3482	0.071^{*}	
C4	0.7500	$0.7683(8)$	0.2500	$0.0403(10)$	
H4A	0.7007	0.8786	0.2966	0.048^{*}	0.50
H4B	0.7993	0.8786	0.2034	0.048^{*}	0.50

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	$0.0582(3)$	$0.0379(3)$	$0.0419(3)$	$0.00042(13)$	$-0.00903(18)$	$0.00663(14)$
P1	$0.0398(7)$	$0.0396(7)$	$0.0398(7)$	$0.0011(4)$	$0.0072(5)$	$-0.0004(5)$
F1	$0.104(2)$	$0.103(2)$	$0.088(2)$	$-0.0565(19)$	$-0.0051(18)$	$-0.0118(19)$
F2	$0.0843(17)$	$0.0799(19)$	$0.0524(13)$	$0.0033(13)$	$0.0112(12)$	$0.0182(13)$
F3	$0.103(2)$	$0.101(2)$	$0.086(2)$	$0.0592(18)$	$0.0278(17)$	$0.0008(19)$
N1	$0.0489(14)$	$0.0392(14)$	$0.0367(14)$	$0.0002(11)$	$-0.0051(11)$	$0.0052(12)$
N2	$0.0402(13)$	$0.0338(13)$	$0.0321(13)$	$-0.0031(10)$	$-0.0006(10)$	$0.0002(11)$
C1	$0.0439(17)$	$0.0339(14)$	$0.0411(18)$	$-0.0017(13)$	$0.0025(14)$	$0.0024(14)$
C2	$0.0441(18)$	$0.072(2)$	$0.049(2)$	$-0.0050(18)$	$0.0074(16)$	$0.023(2)$
C3	$0.0408(18)$	$0.076(2)$	$0.061(2)$	$0.0030(19)$	$0.0024(17)$	$0.015(2)$
C4	$0.050(2)$	$0.029(2)$	$0.041(2)$	0.000	$-0.0025(19)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Ag} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.097(3)$
$\mathrm{Ag} 1-\mathrm{N} 1$	$2.097(3)$
$\mathrm{P} 1 — \mathrm{~F} 1$	$1.562(2)$
$\mathrm{P} 1 — \mathrm{~F}^{\mathrm{ii}}$	$1.562(2)$
$\mathrm{P} 1-\mathrm{F} 3$	$1.575(2)$
$\mathrm{P} 1 — \mathrm{~F} 3^{\mathrm{ii}}$	$1.575(2)$
$\mathrm{P} 1 — \mathrm{~F} 2$	$1.586(2)$
$\mathrm{P} 1-\mathrm{F} 2^{\mathrm{ii}}$	$1.586(2)$
$\mathrm{N} 1 — \mathrm{C} 1$	$1.308(4)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.369(5)$

180.000 (1)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 1$
180.00 (18)
91.3 (2)

F1-P1-F3
88.7 (2)

F1—P1—F3 ${ }^{\text {ii }} \quad 88.7$ (2)
F1i-P1—F3 ${ }^{\text {ii }}$
91.3 (2)

F3-P1-F3 ${ }^{\text {ii }}$
F1—P1—F2
180.0 (2)
90.48 (15)

F1ii-P1—F2
89.52 (15)

F3-P1-F2
F3 ${ }^{\text {ii }}$-P1—F2
F1—P1—F2 ${ }^{\text {ii }}$
90.52 (15)
89.48 (15)
89.52 (15)

F1i-_P1—F2 ${ }^{\text {ii }}$
90.48 (15)

F3-P1-F2 ${ }^{\text {ii }}$
89.48 (15)

F3 $3^{\text {ii }-P 1 — F 2 ~} 2^{\text {ii }}$
90.52 (15)

F2-P1-F2 ${ }^{\text {ii }}$
180.000 (1)
105.8 (3)

$\mathrm{N} 2-\mathrm{C} 1$	$1.334(5)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.354(4)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.459(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.345(6)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{N} 2 \mathrm{iii}$	$1.459(3)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$107.6(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$126.1(2)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4$	$126.2(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$111.0(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	124.5
$\mathrm{~N} 2-\mathrm{C} 1-\mathrm{H} 1$	124.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$	$106.4(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.8
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{H} 2$	126.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$109.2(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	125.4
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3$	125.4
$\mathrm{~N} 2 \mathrm{iii}^{\mathrm{iii}} \mathrm{C} 4-\mathrm{N} 2$	$110.4(3)$
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.6
$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.6
$\mathrm{~N} 2{ }^{\text {iii }}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.6
$\mathrm{~N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.6

sup-4

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Ag} 1$	$125.7(2)$	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.1
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Ag} 1$	$128.5(2)$		
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$0.8(4)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$0.1(6)$
$\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$-177.7(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$-0.5(5)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$-0.7(4)$	$\mathrm{Ag} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$177.8(3)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 22^{\mathrm{iii}}$	$-58.6(3)$	
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$0.4(5)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 2^{\mathrm{iii}}$	$116.4(4)$

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~F}^{\text {iv }}$	0.93	2.78	$3.687(5)$	167
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~F}^{\text {iv }}$	0.93	2.87	$3.448(5)$	122
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{~F}^{\mathrm{v}}$	0.97	2.62	$3.569(4)$	165
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{~F}^{\mathrm{vi}}$	0.97	2.48	$3.224(3)$	133
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{~F}^{\mathrm{vii}}$	0.93	2.81	$3.628(5)$	148
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{~F}^{\mathrm{vi}}$	0.93	2.58	$3.043(4)$	111

Symmetry codes: (iv) $x+1, y, z$; (v) $x, y+1, z$; (vi) $-x+1,-y+1,-z+1$; (vii) $x+1 / 2,-y+1, z-1 / 2$.

supplementary materials

Fig. 1

Fig. 2

